In retinal cones, membrane depolarization in darkness activates the cGMP-dependent conductance. A model of Ca homeostasis and the regulation of guanylate cyclase

نویسندگان

  • J L Miller
  • J I Korenbrot
چکیده

We measured outer segment currents under voltage clamp in solitary, single cone photoreceptors isolated from the retina of striped bass. In darkness, changes in membrane voltage to values more positive than 10 mV activate a time- and voltage-dependent outward current in the outer segment. This dark, voltage-activated current (DVAC) increases in amplitude with a sigmoidal time course up to a steady-state value, reached in 0.75-1.5 s. DVAC is entirely suppressed by light, and its current-voltage characteristics and reversal potential are the same as those of the light-sensitive currents. DVAC, therefore, arises from the activation by voltage in the dark of the light-sensitive, cGMP-gated channels of the cone outer segment. Since these channels are not directly gated by voltage, we explain DVAC as arising from a voltage-dependent decrease in cytoplasmic Ca concentration that, in turn, activates only guanylate cyclase and results in net synthesis of cGMP. This explanation is supported by the finding that the Ca buffer BAPTA, loaded into the cytoplasm of the cone outer segment, blocks DVAC. To link a decrease in cytoplasmic Ca concentration to the synthesis of cGMP and the characteristics of DVAC, we develop a quantitative model that assumes cytoplasmic Ca concentration can be continuously calculated from the balance between passive Ca influx via the cGMP-gated channel and its active efflux via a Na/Ca,K exchanger, and that further assumes that guanylate cyclase is activated by decreasing cytoplasmic Ca concentration with characteristics identical to those described for the enzyme in rods. The model successfully simulates experimental data by adjusting the Ca conductance of the cGMP-gated channels as a function of voltage and the Ca buffering power of the cytoplasm. This success suggests that the activity of guanylate cyclase in cone outer segments is indistinguishable from that in rods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells

We measured currents under voltage clamp in intact retinal rod photoreceptors with tight seal electrodes in the perforated patch mode. In the dark, membrane depolarization to voltages > or = +20 mV activates a time- and voltage-dependent outward current in the outer segment. This dark voltage-activated current (DVAC) increases in amplitude with a sigmoidal time course that is voltage dependent....

متن کامل

The limit of photoreceptor sensitivity: Molecular mechanisms of dark noise in retinal cones

Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon current does not exceed in amplitude intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity we characterized the molecular origin of dark noise in intact, isolated bass single cones. Dark noise arises f...

متن کامل

Speed, adaptation, and stability of the response to light in cone photoreceptors: The functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels

The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide-gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these re...

متن کامل

Cyclic nucleotide-gated channels contribute to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons.

Plateau potentials are prolonged membrane depolarizations that are observed in hippocampal pyramidal neurons when spiking and Ca(2+) entry occur in combination with muscarinic receptor activation. In this study, we used whole-cell voltage clamping to study the current underlying the plateau potential and to determine the cellular signaling pathways contributing to this current. When combined wi...

متن کامل

The Limit of Photoreceptor Sensitivity

Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon photocurrent is small in amplitude and does not exceed intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity, we characterized the molecular origin of dark noise in intact, isolated bass single cones. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 101  شماره 

صفحات  -

تاریخ انتشار 1993